CRYSTALLOCHEMICAL STUDY ON STRUCTURES OF METAL COMPLEXES WITH EDTA LIGAND

MERCÈ FONT-BARDIA, XAVIER SOLANS HUGUET, MANUEL FONT-ALTABA

Dep. Cristal·lografia, Mineralogia i Dipòsits Minerals Facultat de Geologia. Universitat de Barcelona c/ Martí Franqués s/m. 08028 Barcelona

INTRODUCTION

A study of the crystal structure with the formula $EDTAH_nX_mY_p$, where $EDTA = C_{10} H_{12} N_2 O_8$, is the ethylenediaminetetraacetate, has been carried out, using only the compounds crystallized from aqueous solution (Table 1).

The structural data have been obtained from the Cambridge Data Base, from the Department of Crystallography of the University of Barcelona and from M. A. Porai-Koshits (Sov. Sci., Rev. B. Chem, 10, 1987, 91-214).

Ninety one crystal structures were studied, where 29% were solved in the Department of Crystallography of University of Barcelona, and 24% correspond to Moscow State Lomonosov University, (figure 1).

The aim of this work was to determine the EDTA ligand behaviour, when we attempted to obtain metal complexes with this ligands.

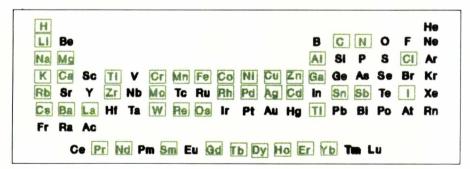


Fig. 1. Cations whose structure was been determined. 29% Dep. Cristal·lografia. U. Barcelona, (Barcelona, SPAIN). 24% State Lomonosov University (Moscou, URSS). 13% Cornell Univ. (Ithaca, USA).

[Butll.Soc.Cat.Cièn.],Vol.XIII,Núm.1,1992

Metal	R	Complexe	NE	Coord.	Fig.	MOR	MOG	MOW	MIN	k1	12	NCCN	NMIN
		[H_EDTA]	1									67.1	
AL(III)	0.50	KIAI(EDTA)]H2O	2	6	OCT	1.92	2.01	2.03		0.09	0.11		
		NH_IA(EDTA)]2H2O(2)	3										
		Rb[A(EDTA)]2H2O(2)	4										
Pd(II)	0.50	[PdH_EDTA)CL_15H_O	5	2+2+201								0.0	536
Ga(III)	0.62	[Ga(H ₂ O)(HEDTA)]	6	6+H2O	PB	216	1.81	195	206	-0.35	0.25	62.6	80.9
Co(III)	0.63	[Ca(en)(H2EDTA)]CL3H2O	7	4+2EN	OCT	1.88			202			582	892
		[Ca(en)(H2EDTA)]CIO4.3H2O	8										
		NH4(Co(EDTA))2H2O	9	6	OCT	1.92	1.88	1.92		-004	0.04	52.6	89.9
		(Ca(HEDTA)(H2O)J3H2O	10	5+H2O	OCT	1.88	191	193	198	0.03	0.07		89.6
Fe(III)	0.64	L(Fe(EDTA), 3H2O	11	6	OCT	1.92	1.99		219	0.07	0.20		
		LIFe(H2O)(EDTA)]2H2O	12	6+H2	OPB	201	211	210	232	0.10	0.31	572	734
		[Fe(H2O)(HEDTA)]	13	6+H2O	PB	193	201	2.07	2.22	0.08	0.19	61.0	829
		Rb(Fe(H2O)(EDTA))H2O	14	6+H2O	PB	1.99	208	1.84	232	0.09	0.32	544	749
		Na[Fe(H2O)(EDTA)]2H2O	15	6+H2O	PB	1.98	210	213	232	012	0.34	52.2	736
		AgFe(H2O)(EDTA)]3H2O	16	6+H2O	PB	1.98	209	211	234	012	0.36	534	731
		KIFe(H2O)(EDTA))H2O	17	6+H2O	PB	1.98	212	211	233	0.14	0.35	567	741
		TIFe(H2O)(EDTA))H2O	18	6+H2O	PB	196	211	211	232	015	0.36	563	738
		Ba(Fe(H2O)(EDTA))4H2O	19	6+H2O	PB	196	208	208	2.27	011	0.31	499	737
		$C_2H_{10}N_2$ (Fe(H ₂ O)(EDTA)]	20	6+H2O	PB	1.99	209	213	233	0.10	0.34	55.1	741
		(N(C2H2)4)(Fe(H2O)(EDTA))2H2O	21	6+H2O	PB	195	209	214	233	0.14	0.37	582	747
Mg(II)	0.65	[Mg(H2O)6[Mg(H2O)(EDTA)]2H2O	22	6+H2O	PB	233	2.03	206	240	-0.30	0.37	573	741
		Na2Mg(H2O)(EDTA)]5H2O	23	6+H2O	MIP	227	208	206	238	-019	0.30	58.0	753
		Na2Mg(H2O)(EDTA) 3H2O	24	6+H2O	MIP								
		[Mg(H2O) [H2EDTA]	25	0+6H2O	OCT			207	2.55			180.0	
OqTV)	0.67	[Os(H ₂ O)(EDTA)]	26	6+H2O	MIP	206	205	205	216	-,010	0.11		
Cu(II)	0.69	Ca(CuEDTA)AH2O	27	6	OCT	1.98	234		2.20	0.36	-0.14	587	836
		[Mn(H2O)4 [CuEDTA]2H2O	28	6	OCT	2.25	199		204	-0.26	0.05	58.1	814
		Cu(H2O)(H2EDTA)	29	5+H2O	OCT	247	195	198	218	-052	0.23	60.3	84.6
		[Ou(en) ₂ (H ₂ O) ₂ [CuEDTA]	30	6	OCT	234	196		201	-0.38	0.05		894
		[Cu(H ₂ O) ₃]CuEDTA]	31	6	OCT	238	196		201	-042	0.05		89.6
		K2[CuEDTAL3H2O	X	6	OCT	230	1.97		2.07	-033	0.10		88.5
Cr(III)	069	NH40(EDTA),2H20 (2)	33	6	OCT								
		KICI(EDTA)]2H2O (2)	34	6	OCT								
		Rb(Cr(EDTA)),2H2O (2)	35	6	OCT								
		[Cr(H2O)(HEDTA)] (6)	36	6+H2O	PB					0.10	0.10		01/
Mn(III)		K[Mn(EDTA)],2H2O (2)	37	6	OCT	191	201		2.20	0.10	019	562	81.6
Sn(IV)	071	[Sn(H ₂ O)(EDTA)]	38	6+H2O	PB	208	208	212	2.31	0.00	0.23	E4.6	95.00
Zn(11)	074	[Mg(H ₂ O), IZn(EDTA)]2H ₂ O	39	6	OCT	212	205		215	-007	0.10	54.6	85.00
		[Mn(H ₂ O), [Zn(EDTA)]2H ₂ O (44)	40										
-		[Zn(H ₂ O) ₄ [Zn(EDTA)]2H ₂ O (44)	41	c 1000	007	202	200	210	- 204	0.05	0.02		97.4
	0.75	Rh(H2O)(HEDTA)	42	5+1120	OCT	203	202	210	204	0.01	0.02	56,6	87A 703
Co(II)	0.78	Ca(Co(H2O)EDTA)4H2O	43	6+H2O	MIP	210	247	2.06	2.21	0.37	-0.26	549 572	793 701
		[Ca(H2O)(H2EDTA)]2H2O	44	6+H2O	MIP	2.37	209	2.20	2.24	0.28	0.15	572 564	79.1 84.1
		$[Min(H_2O)_4]Ca(EDTA)]2H_2O$	45	6	OCT	209	207		215			100000	84.1 84.3
		$[Ca(H_2O)_4]Ca(EDTA)]_2H_2O$ (44)	46	6	OCT	211	206		216	-005	0.10	587	040

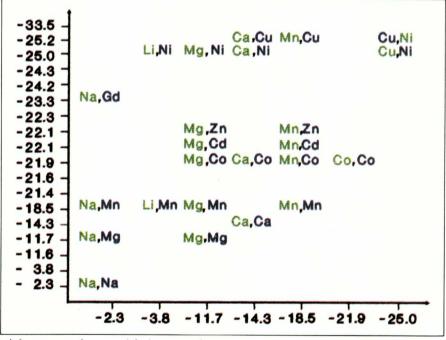
Table 1. Structural data.

 $\mathbf{k_1} = \mathbf{M}\text{-}\mathbf{OR} - \mathbf{M}\text{-}\mathbf{N}; \qquad \mathbf{k_2} = \mathbf{M}\text{-}\mathbf{OR} - \mathbf{M}\text{-}\mathbf{N}.$

192

	R	Complexe	NE	Coord.	Fig.	M-OR	M-OG	MOW	MIN	k1	12	NGCN	NMH
				5+H2O	ост	2.12	202	2.08	2.10	0.10	0.08	581	863
N(II)	0.78	LIN(H_O)(HEDTA) H_O	48		OCT	2.05	202	200	208	-003	0.00	583	87.3
		[N(H2O)4]N(EDTA)]2H2O (44)	49	6		208	208		206	0.04	-002	596	87.6
		[Cu(en)2(H2O)][N(EDTA)]3H2O	50	6	OCT			208		0.12	0.07	599	865
		[N(H ₂ O)(H ₂ EDTA)]	51	5+H2O	OCT	216	203	208	210	ulz	u 0/	595	80.5
		[Mg(H2O)4]N(EDTA)]2H2O (44)	52		oor		200		208	-002	0.02		88.0
		[Cu(en) ₂ (H ₂ O)][NEDTA]2H ₂ O	53	6	OCT	204	206						87.6
		[Ca(H2O)3][NEDTA]H2O	54	6	OCT	205	206		207	-001	0.01		
		[Cu(H2O)4[[NiEDTA]	55	6	OCT	204	208		208	-004	0.00		86.6
		[N(NH3)6[NEDTA]	56	6	OCT	205	208		207	-003	-001		865
Min(II) 0	080	Liz[Mn(H2O)(EDTA)]4H2O	57	6+H2O	MIP	2.28	215	2.23	245	013	0.30	563	740
		[Mn(H2O)4][Mn(H2O)(HEDTA)]2H2O		6+H2O	MIP	225	2.24	2.23	238	0.01	014	54.8	752
		[Mg(H2O), [Mn(H2O)(EDTA)]2H2O	5 9	6+H2O	PB	237	214	219	242	0.23	0.28	60.5	744
		[Mn(H2O)4][Mn(H2O)EDTA)]4H2O	60	6+H2O	MIP	2.24	216	2.22	244	0.08	0.28	465	752
		(NH4)2[Mm(H2O)(EDTA)]3H2O	61	6+H2O	PB	2.26	221	2.24	236	0.05	015	536	752
		Na2[Min(H2O)(EDTA)]5H2O	62	6+H2O	MIP	236	219	215	240	017	0.21	610	76.6
		Rb_[Min(H2O)(EDTA)]3H2O	63	6+H2O	PB	225	219	233	237	0.06	0.18	547	741
Zr(IV)	0.80	[Zr(H2O)2(EDTA)]2H2O	64	6+2H2O		212	214	2.27	243	-02	0.29		
Sh(III)	0.90	(Sb(HEDTA))2H2O	65	6+:	PB	250	218		235	0.32	017		
T(TV)	0.90	[Ti(H ₂ O)(EDTA)]	66	6+H2O	PB	192	198	208	230	-006	0.32		739
Yb(III)	0.94	Ca(Yb(H2O)2(EDTA))2H2O	67	6+2H2O		227	225	237	253	-002	0.28		69.7
Na(1) 0.9	0.95	Na ₃ [Na(EDTA)]	68	6+1		249	244		253	0.05	0.09	575	705
		Na ² (H ₂ O)(H ₂ EDTA)	Ø									180.0	
Er(III)	0.96	NH4Er(H2O)2(EDTA)2H2O	70	6+ 2H2 O		231	223	232	256				719
Cd(11) (0.97	[Mg(H2O), [Cd(H2O),EDTA)]3H2O	71	6+H2O	PB	243	235	225	240	0.08	0.05	653	762
		[Mn(H2O)4 [Cd(EDTA)]2H2O	72	6+1	PB	234	233		242	0.01	0.09	57.5	754
Ho(III)	0.97	Na(Ho(EDTA))8H2O	73	6+3H2O		238	235	245	265	0.03	0.30	62.6	687
Ca(II) 0.99	0.99	Ca(Ca(H2O),(EDTA))7H2O	74	6+2H2O		253	2.29	246	266	0.24	0.37	578	67.0
		Ca(H2EDTA)35H2O	75	1+1+1+1+2H	20							67.1	
		Ca(H2EDTA)2H2O	76	1+1+1+1+1+1	120							664	
Dy(III)	0.99	Na(Dy(H2O),(EDTA))5H2O	77	6+312		2.39	246	263					683
Tb(III)	1.00	Na(Tb(H2O)3(EDTA)15H2O (80)	78	6+3120									
Gd(III)	1.02	Na(Gd(H2O),(EDTA),5H2O (80)	79	6+3120		2.39	247	265					67.8
Sm(III)	1.04	Na[Sm(H2O)3(EDTA)]5H2O (80)	80	6+31120		243	2.50	2.67					67.5
Nd(III)	1.08	KINd(H2O)3(EDTA)15H2O (80)	81	6+3120		243	254	271					669
Pr(III)	1.09	Na(Pr(H2O),(EDTA),5H2O (80)	82	6+3120		246	253	271					67.0
Sn(II)	1.12	Sn(Sn(EDTA)]2H2O	83	6+:	PB	268	237		244	0.31	0.07	592	743
		Sn(H2EDTA)	84	6+:	MIP	290	2.27		242	0.63	0.15	583	738
La(III)	115	K[La(H2O)3(EDTA)]5H2O (80)	85	6+3H2O									
K(I)	133	K2[H2EDTA]	86									×860	
Ba(II)	135	[Ba(H2O)]Ba(H2O)(EDTA)]05H2O	87	6+3+H2O	276	277	308	299	-001	0.22	41.0	581	
Rb(I)	148	RbJH_EDTAL2H_O	88	0								161.8	
Q(-1)	1.81	(HEDTA)CHLO	89									1787	
	216	(HEDTAL2HO	90									180.0	
I (-1)		(C4H10N2)(H4EDTA)	91									77.3	

THE BIMETALLIC COMPLEXES


Usually a metal (inner metal) is coordinated to an EDTA ligand by means of six bonds: two bonds to nitrogen atoms of ethylenediamine moiety, and four bonds– to oxygen of carboxylate groups of the same ligand. The first question that we wish to solve is about the metal complexes. When we attempt to introduce two different metals to an EDTA ligand, does a preferential order to occupy the inner position exist? (figure 2).

We have compared the solved structures with the Gibbs energy for the reaction (Table 2):

$$M^{+z} + EDTA \rightleftharpoons MEDTA^{z-4}$$

It is observed that the metals which coordinate with EDTA are those with less Gibbs energies in this reaction, with the exception of the (Cu, Ni) complex, but the Gibbs energies for these two metals are very similar (-25.2 and -25.0 Kcal/mol, respectively) (Table 2).

Table 2. G for M^{+z} + EDTA⁻⁴ \leftrightarrow MEDTA^{z-4} + H₂ O

left outer metal
right inner metal

[Butll.Soc.Cat.Cien.], Vol.XIII, Núm.1, 1992

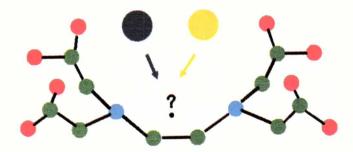


Fig. 2. Which is the atom that has the preferential order?

A similar result is obtained if we compare the pK of hydrolysis of the inner metal. Ions with the lower pK occupy the inner position, so ions with more facility to loose the hydratation molecules, more easily occupy the inner position (figure 3).

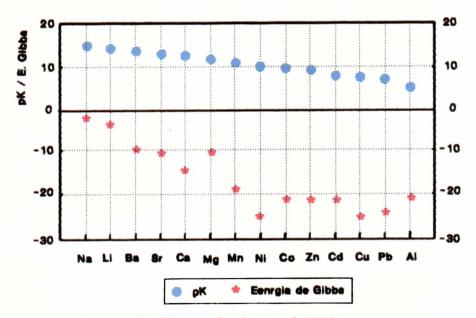
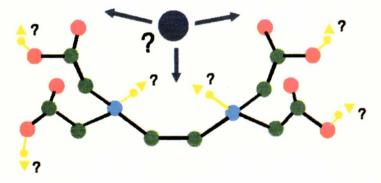
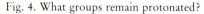




Fig. 3. Hydrolysis pK and Gibbs energy for obtaining of MEDTA.

THE PROTONATED COMPLEXES

In acid medium, the EDTA metal complexes are obtained with protons linked to EDTA ligand. The H₄EDTA structure shows four protons, where two are linked to amine groups and the remaining two are linked to two different carboxylate groups. The protonated complexes can be obtained by the substitution of one, two, or three protons of amine or carboxylate group. (figure 4).

The study of the solved crystal structures shows that the hard acid ions are coordinated to four or five oxygen atoms of different protonated EDTA ligands, while the protons of amine groups are not substituted.

Softer acid ions are coordinated to two nitrogen atoms of ethylenediamine moiety and three or four oxygen atoms of carboxylate groups of the same EDTA ligand, while the proton of EDTA is linked to a glycine oxygen atom.

THE EDTA CONFORMATION

The H₄EDTA compound shows a synclinal or cis conformation for the ethylenediamine moiety. This conformation is observed in 92.4% of crystal structures of EDTA metal complexes. A semi-open, or peryplanar, or trans conformation for the ethylenediamine moiety is observed in the protonated complexes of Rb Na, Mg(H₂O)₆, Cl and I, and the nonprotonated Cu₂EDTA 4 (H₂O) (figure 5).

The ION COORDINATION NUMBER

A single correlation between the coordination number and, for example, the ionic radii does not xist. Usually, the coordination number increases with an increase of the ionic radii; but, for similar ionic radii, the

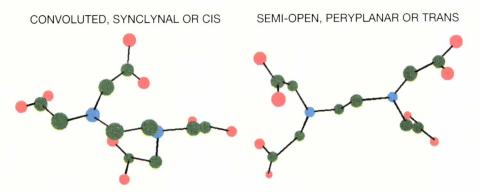


Fig. 5. Different conformations of EDTA ligand.

ion with a higher ionic charge (higher solvation energy or hydrolysis pK) shows also higher coordination number (figure 6).

The influence of ionic radii can be observed from the distortion of six-coordination polyhedra. Thus, an increase of ionic radii, causes and extension of Me-N length and a decrease of the N-Me-N angle. This decreasing results in an increase of N-Me-OR and makes easier the incorporation of a new atom in the opposite site to both nitrogen atoms.

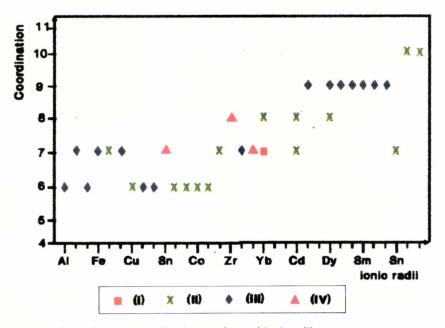


Fig. 6. Correlation between coordination number and ionic radii.

The results obtained from the study of coordination numbers suggest a mechanism for the coordination of metal ions to an EDTA ligand. In aqueous solution the metal ion will be solvated and the EDTA must show the typical convoluted or synclinal conformation as has been observed from spectroscopic analysis (figure 7). The loss of solvation molecules depends on the ionic radii, the acidity of the medium, and the acid character of the metal ion. The metal ion losing more easily the solvation molecules, will be linked to an EDTA ligand, occupying the inner position. It will lose all solvation water molecules or not, according to the solvation energy. In the second case the water molecule occupies the opposite site to the EDTA ligand and causes an increase in the coordination number. For hard acid ions the poor ability in loosing the solvation molecules, makes each metal ion bond to different EDTA ligands, and yields a semi-open conformation in the EDTA ligand.

Cu(II) ion shows a large bond length due to the Jahn-Teller effect, this fact causes a behaviour more similar to that observed for hard acid ions.

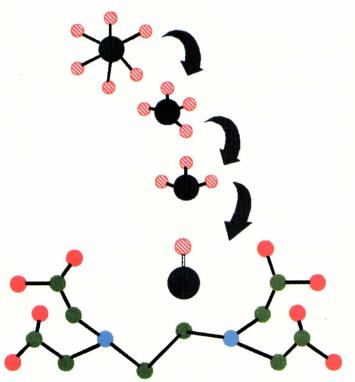


Fig. 7. Lost aqueous solvation of the metal.

[Butll.Soc.Cat.Cièn.],Vol.XIII,Núm.1,1992

CRISTALLOCHEMICAL STUDY

Abstract

A crystallochemical study of metal complexes with the ethylenediaminetetraacetic acid ligand has been carried out. The structural data were obtained from the Cambridge Data Base, University of Barcelona and Lomonosov State University Moscow. The results obtained indicate that the solvation energy, the ionic radii and the acid character determine the coordination number of metal complexes and the conformation of ethylenediaminetetraacetic acid.

REFERENCES

- 1. FONT-BARDIA, M. Thesis Doctoral. Barcelona 1990.
- 2. Cambridge Structural data base System (CSD). Cambridge Crystallographic Data Centre (CCDC). University Chemical Laboratory, Lensfield Road, Cambridge.
- 3. PORAI-KOSHITS, M. A. Sov. Soc. Rev. B. Chem. 10 (1987) 91.